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Abstract
In the problem of a vortex escaping from a metastable potential, we derive
the localization criterion of a vortex at finite dissipation and temperature by
analysing both the crossover temperature formula and the escape rate formula.
In the absence of a pinning potential in the stable direction, this criterion shows
that a vortex will be localized in a metastable potential when the Magnus force
is strong enough. Using the concept of this localization criterion, the effective
mass of a vortex can be defined and interpreted. Moreover, the role of pinning
and dissipation in the process of vortex escape can also be discussed.

1. Introduction

A quantized vortex is a topological object that generally exists in a variety of materials such as
a Bose superfluid 4He [1, 2], type-II superconductors [3] and a Fermi superfluid 3He [4]. The
dynamical properties of vortices are widely accessible to experimental studies in both classical
and quantum regimes and their importance has long been realized [5–8]. In high-temperature
superconductors, the physics of vortices also shows many new aspects not encountered in
conventional superconductors [9]. One of the main problems in type-II superconductors is
that when the magnetic field is applied the quantized magnetic flux, which is always associated
with a vortex line, penetrates the superconductor and therefore a vortex movement (due to
the presence of the Lorentz-like Magnus force [10–12]) causes an unfavourable condition of
resistance in the superconductor. To prevent this resistance, the vortex needs to be pinned. The
greater the pinning force, the greater the level of current that can flow in the zero-resistance
state. Another big problem concerns the topic of the intrinsic mass or the inertial mass of a
vortex [13–15]. This intrinsic mass has been identified as corresponding to different origins
such as core mass [16], the electromagnetic field mass [16–20] and the strain field inertial
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mass [21]. Moreover, the theoretical estimates of the mass range from zero [22], to finite [23],
to infinite [17, 18].

In this paper we use the model Hamiltonian proposed by Ao and Thouless [24], which
contains the assumed non-zero finite vortex mass, to make an analytical study of a vortex
escaping from a metastable potential in the presence of the Magnus force, pinning and
dissipation. This study leads to many conclusions concerning the roles of pinning and
dissipation and especially the localization and the effective mass of a vortex. We also show
that although the non-zero mass is used here, the resulting effective mass expression will be
shown to be the same as the one that uses the assumed zero mass by setting this non-zero mass
to zero at the end of our analysis. Now, let us start with the Hamiltonian for a vortex moving in
a two-dimensional x–y plane, which can be regarded as a point particle, in the form [24]

H = 1
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∣
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with the vector potential �A determined by �∇ × �A = (M�/qν)ẑ. Here qν = +1 (−1) stands for
the vorticity parallel (antiparallel) to the unit vector ẑ in the z direction, M is the intrinsic vortex
mass and � is the frequency dimensional parameter which is equal to qνhρsd/2M for a vortex
in a superconductor (where ρs is the superfluid electron number density) or qνhρsd/M for a
vortex in a superfluid (where ρs is the superfluid atom number density). Here h and d are the
Planck constant and the thickness of the sample (e.g. the thickness of the superconductor film),
respectively. Note that since vortex motion under the Magnus force is similar to the motion of
an electron in the presence of a magnetic field, the results obtained in this paper can be directly
used in the problem of an electron escaping provided that � = eB/M and qν is replaced by an
electron charge e.

Equation (1) can be explained as follows. The vector potential �A reflects the existence of
the vortex velocity-dependent part (VVDP) of the Magnus force �FM = M�(�vs − �̇r) × ẑ which
depends on the relative velocity between the superfluid velocity �vs (which is assumed, without
loss of generality, to be parallel to the x-axis) and the vortex velocity �̇r . The Magnus force
can be derived by various methods, e.g. by Thouless and co-workers [10], Wexler [11] and
Sa-yakanit [12]. It is clear that the frequency dimensional parameter � we have just defined
represents the strength of the Magnus force (or the Lorentz force for the problem of an electron
escaping). The superfluid velocity-dependent part (SFVDP) of the Magnus force will contribute
to the vortex potential V (�r). By following [24], we shall put the vortex potential V (�r), which
contains both the contribution from the SFVDP Magnus force and the pinning centres, in the
form

V (�r) = V (y) + 1
2 kx x2. (2)

The pinning potential in the x direction is approximated by a harmonic potential characterized
by the parameter kx . In this paper, the potential V (y) consisting of the contributions from
the SFVDP Magnus force and the pinning potential in the y direction is assumed to be of
the metastable cubic-plus-quadratic form with a metastable point at y = 0 [25, 26]. This
metastable potential is characterized by two parameters: (i) ω0, the frequency of the small
oscillation about y = 0 of the potential V (y), and (ii) ωb, the frequency of the small oscillation
about y = yb (V (yb) is equal to the potential at the barrier top) of the inverted potential
−V (y). Note that in the problem of an electron escaping the potential V (y) consists of the
pinning potential in the y direction only because an electron can feel the Lorentz force by its
own velocity. The last term in equation (1) represents the dissipative environment of a vortex
consisting of a set of harmonic oscillators as formulated in [27]. The effect of the dissipative
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environment is specified by the following spectral function:

J (ω) = π
∑

j

c2
j

2m jω j
δ(ω − ω j ). (3)

In our problem of escaping, the Euclidean action corresponding to the Hamiltonian (1)
is independent of the choice of gauge since the boundary condition �r(0) = �r(β h̄), where
β = 1/kBT is the inverse temperature, is required. For this reason, we can choose any form
of vector potential whenever it satisfies the relation �∇ × �A = (M�/qν)ẑ. As in [24], the
vector potential will be chosen in the form �A = (M�/qν)(y, 0, 0). The Euclidean action
corresponding to the Hamiltonian (1) with this form of the vector potential is [24]

SE =
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. (4)

After integrating the environmental and x degrees of freedom of a vortex, the reduced
thermodynamic description in the metastable direction, i.e. the y direction, can be known via
the reduced partition function

Zd (βh̄) =
∮

D[y(τ )] exp(−SE
eff[y(τ )]/h̄), (5)

where

SE
eff[y(τ )] =

∫ βh̄

0

[
1
2 M ẏ2 + V (y)

]

dτ + 1
2

∫ βh̄

0

∫ βh̄

0

[

K (|τ − τ ′|) + g(τ − τ ′)
]

× [

y(τ ) − y(τ ′)
]2

dτ ′ dτ. (6)

From [24], K (τ ) and g(τ ) are called the normal and anomalous damping kernel, respectively.
They are expressed as

K (τ ) = 1

2π

∫ ∞

0
dω J (ω)

cosh
[

ω(βh̄/2 − τ )
]

sinh
[

ωβh̄/2
] , (7)

and

g(τ ) = M�2

2βh̄

∞∑

n=−∞

(
Mω2

x + ξn

Mν2
n + Mω2

x + ξn

)

eiνnτ . (8)

Here

ξn = 1

π

∫ ∞

0
dω

J (ω)

ω

2ν2
n

ω2 + ν2
n

; νn = 2nπ/βh̄, ω2
x = kx/M. (9)

In the problem of escaping, one of the important quantities is the escape rate (denoted by K ).
According to Affleck [28], the escape rate formula is divided into two forms separated by the
crossover temperature (denoted by T0) as follows:

K = − 2

h̄
Im F; for T < T0, (10)

and

K = − 2

h̄

β

β0
Im F; for T > T0, (11)



2658 S Khemmani and V Sa-yakanit

where β0 = 1/kBT0 is the inverse crossover temperature and F is the free energy which is
related to the reduced partition function (5) by Zd = exp(−β F). In equations (10) and (11),
the imaginary part of the free energy (Im F = −(1/β) Im(ln Zd)) can be calculated by using
the analytic continuation method pioneered by Langer [29]. The crossover temperature, which
is mainly used for the analysis in this paper, is the temperature where the dominant mechanism
of the escape process changes from thermal activation to quantum tunnelling. In the functional
integral point of view [25, 26], the crossover temperature is the temperature where the dominant
trajectory of the functional integral for Zd changes from the trivial trajectory (y = 0 and
y = yb) to the bounce trajectory (the back and forth trajectory in the inverted potential). In
other words, if we decrease the temperature from T > T0 to T < T0, then the corresponding
dominant trajectory will be changed from trivial to bounce and the corresponding dominant
physical mechanism of the escape process will roughly change from thermal activation to
quantum tunnelling.

2. Existence of the crossover temperature

It is worthwhile now finding the equation for determining the crossover temperature T0. The
procedures are as follows. First, from the definition of the crossover temperature discussed
above, it is clear that slightly below T0 the bounce trajectory will be replaced by the harmonic
oscillator which is the small oscillation about yb with the frequency ωR = 2π/β0h̄. Second,
by using the variational principle δSE

eff = 0 where SE
eff has already been defined in equation (6),

the equation of motion is obtained. Third, by substituting the harmonic oscillator solution from
the first step into the equation of motion in the second step, then with the help of equations (7)
and (8), one can linearize the equation of motion and get

ω2
R + ωRγ̂M(ωR) = ω2

b, (12)

where ωR = 2π/β0h̄ = 2πkBT0/h̄, ω2
b = −V ′′(yb)/M , and

γ̂M(x) = γ̂ (x) + �2x

x2 + ω2
x + x γ̂ (x)

, for all x � 0, (13)

where γ̂ (x) = (2x/Mπ)
∫∞

0 [J (ω)/ω(ω2 + x2)] dω is the Laplace transform of the retarded
friction [25, 26] (when the environment is represented by the Caldeira–Leggett model [27]).
Note that γ̂M(x), where the subscript M denotes the Magnus force, reduces to γ̂ (x) when the
Magnus force is absent (i.e. γ̂M → γ̂ as � → 0) and then equation (12) also reduces to
ω2

R +ωRγ̂ (ωR) = ω2
b [25, 26], which is the equation for determining T0 in the well-known case

of a one-dimensional system. This should not be a surprise, since when � → 0 the motion in
the unstable direction (y direction) will be decoupled from the stable one (x direction).

The interesting question is that how much we can investigate the behaviour of T0

or equivalently ωR. Evidently, to know all of its behaviours one must find the roots of
equation (12). Unfortunately, it may be impossible to find them since γ̂ (x) contains an integral
of J (ω) which has no specific form in general cases. However, just two of its properties are
sufficient for us to investigate the important physical situations which will be described in the
next two sections. The first property is the uniqueness of T0. One can guess that if T0 exists,
then it should be unique since the crossover temperature is the temperature where the change
in the dominant mechanism of the escape process roughly occurs and once this change has
occurred it should not occur again. The second property is the existence of T0. One may guess
at first sight that T0 always exists because when we decrease the temperature from high to very
low, then the dominant mechanism of escape should roughly changed from thermal activation to
quantum tunnelling at some temperatures. In order to check whether these guesses are correct
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or not, these two properties can be proved mathematically by looking at equation (12) carefully
as follows. We rewrite equation (12) as x γ̂M(x) = ω2

b − x2 (ωR is the root of this equation).
Here, x is confined only in the positive range i.e. x � 0 since T0 is the absolute temperature
which is always greater than or equal to zero. Notice that ω2

b − x2 is the continuous decreasing
function on the positive range of x and has a maximum value equal to ω2

b at x = 0. Furthermore,
one can prove from equation (13) through differentiating x γ̂M(x) that x γ̂M(x) is a continuous
increasing function on a positive range of x . By these properties of ω2

b − x2 and x γ̂M(x), it is
clear that the root of the equation x γ̂M(x) = ω2

b − x2 exists and is unique if and only if

lim
x→0

x γ̂M(x) � ω2
b. (14)

Now, since the two properties of T0 mentioned earlier have already been proved, it can then be
summarized that the crossover temperature exists and is unique if and only if the condition (14)
is fulfilled.

3. Vortex escaping formulae and the localization criterion

At this point, the following study of a vortex escaping is divided into two cases.
First (ωx �= 0). In this case, one can prove from equation (13) that limx→0 x γ̂M(x) = 0 <

ω2
b, which is implied by condition (14) that the unique crossover temperature T0 always exists.

The existence of T0 tells us that (i) there is a temperature where the dominant mechanism
of escape will be roughly changed and (ii) the tunnelling rate (the escape rate when the
dominant mechanism is quantum tunnelling) is always non-zero because of the existence of
bounce trajectory. In this case, the escape rate K for T > T0 can be derived analytically
by using the same methods as in [25, 26] as follows. First, replacing y by its Fourier series,
i.e. y(τ ) = ∑∞

n=−∞ yneiνnτ , and substituting it into equation (6) and developing V (y) in a
Taylor series around y = 0 and y = yb, the semiclassical effective action about y = 0 (denoted
by SE(0)

eff [y]) and y = yb (denoted by SE(b)
eff [y]) can be expressed in the form

SE(0)

eff [y] = Mβh̄

2
λ

(0)

0 y2
0 + Mβh̄

∞∑

n=1

λ(0)
n |yn|2 ; λ(0)

n = ν2
n + ω2

0 + νn γ̂M(νn), (15)
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SE(b)
eff [y] = Vbβh̄ + Mβh̄

2
λ

(b)
0 y2

0 + Mβh̄
∞∑

n=1

λ(b)
n |yn|2 ; λ(b)

n = ν2
n − ω2

b + νn γ̂M(νn),

(16)

where Vb = V (yb). Second, splitting the reduced partition function (5) into the contributions
arising from the Gaussian fluctuations about the trivial paths y = 0 and y = yb and
writing Zd = Z (0)

d + Z (b)
d , where Z (0)

d and Z (b)
d are the reduced partition functions which

have the corresponding effective actions (15) and (16), respectively, the negative value of
λ

(b)
0 = −ω2

b (after using the normalized functional measure in Fourier space [25] and Langer’s
thermodynamic method [29]) leads to an imaginary part of the free energy in the form

Im F = − ω0

2βωb

( ∞∏

n=1

λ(0)
n

λ
(b)
n

)

e−βVb . (17)

Third, substituting equation (17) into (11), we finally obtain

K = ω0

2π
ρCqme−βVb , (18)
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where ρ = ωR/ωb and Cqm = ∏∞
n=1 λ(0)

n /λ(b)
n � 1 is called the quantum correction

factor or the quantum-mechanical enhancement factor because it describes the quantum effects
(i.e. tunnelling and increasing the average energy in the well) which enhance the escape rate.

Noticing from equation (13) that γ̂M increases as the Magnus force strength (characterized
by �) increases. For this reason, one can conclude from equation (12) that ωR or ρ decreases
when the Magnus force strength increases and, by the definition of Cqm itself, Cqm also
decreases when the Magnus force strength increases. These imply that the VVDP Magnus force
tends to decrease the escape rate. In contrast, the pinning potential in the x direction tends to
increase the escape rate since, from equation (13), γ̂M decreases as ωx increases. Although
these conclusions can be used when T > T0 (because K in equation (18) is valid for T > T0

only), it may be used when T < T0 too. This stems from the fact that since the correction
factor Cqm describes the quantum effect on the escape process including quantum tunnelling,
the effects of the Magnus force and the pinning potential in the x direction on tunnelling rate
should be the same as on Cqm. As described above, Cqm decreases (increases) when the Magnus
force strength (pinning potential in the x direction) increases. These imply (as in the case of
T > T0) that the VVDP Magnus force tends to decrease the tunnelling rate while the pinning
potential in the x direction tends to increase the tunnelling rate. Moreover, both pinning and
dissipation tend to suppress the influence of the VVDP Magnus force on vortex escaping since �

is in the numerator while ωx and γ̂ (which contains an integral of J (ω)) are in the denominator
of the second term of equation (13).

Second (ωx = 0). In this case, one can prove from equation (13) that limx→0 x γ̂M(x) =
�2/[1 + (2/Mπ)

∫∞
0 (J (ω)/ω3) dω]. So, from condition (14), it is clear that the crossover

temperature does not exist if

�2

1 + 2
Mπ

∫∞
0

J (ω)

ω3 dω
> ω2

b. (19)

Condition (19) tells us that the crossover temperature does not exist if the Magnus force
strength is large enough. This non-existence of a crossover temperature implies that the bounce
trajectory does not exist and, hence, the tunnelling rate must vanish. Now, an interesting
question arises: although the tunnelling rate vanishes, is it possible that the escape process,
when condition (19) is fulfilled, will be dominated by thermal activation over the entire range
of temperature? The answer is no, because of the fact that the value of λ

(b)

0 is now equal to
−ω2

b + �2/[1 + (2/Mπ)
∫∞

0 (J (ω)/ω3) dω] which is greater than zero when condition (19)

is fulfilled. This positive value of λ
(b)
0 makes the free energy finite and real which implies

that the escape rate must vanish or, equivalently, a vortex must be localized in the well.
The above discussion can be summarized that if ωx = 0 and the condition (19) is fulfilled,
then the vortex must be localized in the well. For this reason we shall call condition (19)
the localization criterion, and since the derivation of this criterion is done irrespective of
temperature and dissipation, it must be valid at any finite dissipation and temperature. By
using Mω2

b = −V ′′(yb), the localization criterion (19) can be written in the form

(M�)2

M + 2
π

∫∞
0

J (ω)

ω3 dω
>
∣
∣V ′′(yb)

∣
∣ , (20)

where, by the definition of �, M� is the mass-independent parameter, e.g. M� = qνhρsd/2
for a vortex in a superconductor. Note that, for a vortex in a superconductor, the localization
criterion (20) reduces to the localization criterion in the case of no pinning at zero temperature
given by Ao and Thouless [24] when the dissipation is absent, i.e. J (ω) = 0. In the case when
the criterion (19) is violated, the escape rate, both for T > T0 and T < T0, does not vanish. The
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escape rate for T > T0 in this case (denoted by K̃ ) can be derived by using the same methods
in the first case as

K̃ = ω0

2π
ρ̃Cqme−βVb ; ρ̃ = ω0MωR/ω0ωbM, (21)

where

ω2
0M = ω2

0 + �2

/[

1 + (2/Mπ)

∫ ∞

0
(J (ω)/ω3) dω

]

,

and

ω2
bM = ω2

b − �2

/[

1 + (2/Mπ)

∫ ∞

0
(J (ω)/ω3) dω

]

> 0.

The subscript M on ω0M and ωbM denotes the abbreviated name of Magnus force due to its
effect via the parameter �. Note that ω0M → ω0 and ωbM → ωb as � → 0 imply that
K̃ → K as � → 0. For � → 0, the localization criterion is always violated which implies
that a vortex must escape from a metastable potential with a specific non-vanishing escape rate
at any temperature. Note also that since 1 + (2/Mπ)

∫∞
0 (J (ω)/ω3) dω = M∗/M (M∗ is the

effective mass defined in section 4) and M� is mass independent, K̃ is still well defined by
equation (21) even when M → 0. The situation where M = 0 is set will be discussed further
in the next section and also in the conclusions.

The above two cases show that the pinning potential in the x direction is an important
quantity, because when ωx �= 0 the escape rate is non-zero for any magnitude of the VVDP
Magnus force while the escape rate for ωx = 0 is zero for a strong enough VVDP Magnus
force. In other words, for ωx = 0, the VVDP Magnus force, which has sufficient strength,
renormalizes the original metastable potential to the stable one. In the classical point of view,
the pinning potential in the x direction can bend the trajectory of a vortex in such a way that it
helps a vortex to escape from the well while the VVDP Magnus force tends to trap a vortex in
the well by keeping it in a circular motion.

4. Effective mass of a vortex

The effective mass of a vortex can be defined by using the localization criterion (20) as follows.
Noticing that the M� term in the numerator of (20) is mass independent, the mass-dependent
term is therefore only in the denominator. Hence, the effective mass (denoted by M∗) can be
defined as

M∗ := M + 2

π

∫ ∞

0

J (ω)

ω3
dω (22)

so that the criterion (20) becomes

(M�)2

M∗ >
∣
∣V ′′(yb)

∣
∣ . (23)

From criterion (23), the effective mass can then be interpreted that since M∗ = M in
the absence of dissipation (see equation (22)), a damped vortex (a vortex in contact with
the environment) behaves as if it is an undamped vortex (a vortex which is free from the
environment) of the new bigger mass called the effective mass when it decides to escape from
the well. This effective mass is equal to the intrinsic mass plus the extra mass originating from
the environment since it depends on the spectral function. Note that this extra mass, which is
equal to the effective mass when the intrinsic mass M vanishes, is equal to the effective vortex
mass given by Han et al [30] (the spectral function defined here is equal to π/2 times the one
defined in [30]). Complementing their derivation, we show that the anomalous damping kernel



2662 S Khemmani and V Sa-yakanit

in the effective action (6), pertaining to the transverse motion of a vortex, does not affect the
effective mass defined in equation (22) since it is independent of the Magnus force strength �.
Moreover, our derivation of the effective mass via the localization criterion does not require the
local in time assumption which demands that a vortex must be moving sufficiently slowly or
along a straight line. To understand more about the effective mass, we first consider our system
in the new masses µ j and new coordinates �̃q j for the environment [31] given by

�̃q j = m jω
2
j �q j

c j
, µ j = c2

j

m jω
4
j

. (24)

From equation (24), the Hamiltonian (1) can be rewritten as

H = 1

2M

∣
∣
∣ �P − qν

�A(�r)

∣
∣
∣

2 + V (�r) + 1

2

∑

j

µ j

[∣
∣
∣
˙̃�q j

∣
∣
∣

2
+ ω2

j

∣
∣
∣ �̃q j − �r

∣
∣
∣

2
]

. (25)

We can see that the model Hamiltonian (1), in fact, describes a vortex of mass M with many
masses µ j attached by springs to its coordinate �r . From equations (3) and (24), the sum of µ j

can be written in the form
∑

j

µ j = 2

π

∫ ∞

0

J (ω)

ω3
dω. (26)

It is clear, from equations (22) and (26), that the effective mass M∗ is equal to the total
mass of the system which is composed of a vortex of intrinsic mass M with many masses
µ j . At this point, one may think that the coordinate of the effectively undamped vortex of
mass M∗ may be the centre of mass coordinate which contains the total mass of the system.
Although this conclusion may be possible, we cannot exactly do this since our definition of
the effective mass does not come directly from the dynamical approach (it is defined via the
localization criterion). However, some conclusions can be made for the case of sufficiently
weak environmental coupling so that

∑

j µ j � M . In this case, the centre of mass coordinate
of the system will approximately coincide with the original coordinate of a damped vortex at
all times. For this reason, one can conclude in this case that the damped vortex of intrinsic
mass M can be effectively viewed as an undamped vortex of mass M∗ and the coordinate
of this undamped vortex is identical to the centre of mass coordinate of the system which is
approximately identical to the coordinate of an original damped vortex.

5. Conclusions

We have studied the influence of pinning, dissipation and the Magnus force on a vortex
escaping through the localization criterion and the escape rate formulae and found (i) that
at any temperature and dissipation, a vortex always escapes from the well when the pinning
potential in the stable direction is present while it is localized in the well for strong enough
VVDP Magnus force when the pinning potential in the stable direction is absent and (ii) at
any temperature, the VVDP Magnus force tends to decrease the escape rate while the pinning
potential in the stable direction tends to increase the escape rate. Moreover, both pinning and
dissipation tend to suppress the influence of the VVDP Magnus force on vortex escaping. Also
(iii) the effective mass of a vortex can be defined in the sense that when a damped vortex
decides to escape from the well it can be effectively viewed as an undamped vortex of a new
bigger mass called the effective mass. The effective mass is equal to the intrinsic mass plus the
extra mass originating from the environment and can be viewed as the total mass of the system
when considering the system in the appropriate coordinates and masses. For sufficiently weak
environmental coupling, the whole system can be effectively viewed as one undamped vortex
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of effective mass described by the centre of mass coordinate which approximately coincides
with the coordinate of an original damped vortex. It is interesting that when the intrinsic
mass is taken as zero, our effective mass is equal to the one given by Han et al [30]. Besides
the differences in methods and assumptions between their work and ours, another remarkable
difference is that they claim that the intrinsic mass must be zero while our analysis requires
a non-zero finite mass in the model Hamiltonian which can be set to be zero at the end
of calculations. Hence, if a vortex really has a vanishing intrinsic mass in nature, the non-
vanishing finite mass in the model Hamiltonian (1) may be interpreted as a pseudo-mass which
can be set to be zero at some steps of the calculation in order to get the correct physical answers.
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